Skip to Content

A Supervised Approach to Electric Tower Detection and Classification for Power Line Inspection

Publication
Congresses name: 

International Joint Conference on Neural Networks (IJCNN 2014)

Place: 

Beijing

Date: 
July 6-11

Abstract:
Inspection of power line infrastructures must be periodically conducted by electric companies in order to ensure reliable electric power distribution. Research efforts are focused on automating the power line inspection process by looking for strategies that satisfy the different requirements of the inspection: simultaneously detect transmission towers, check for defects, and analyze security distances. Following this direction, this paper proposes a supervised learning approach for solving the tower detection and classification problem, where HOG features are used to train two MLP (multi-layer perceptron) neural networks. The first classifier is used for backgroundforeground separation, and the second multi-class MLP is used for classifying 4 different types of electric towers. A thorough evaluation of the tower detection and classification approach has been carried out on image data from real inspections tasks with different types of towers and backgrounds. In the different evaluations that were conducted highly encouraging results were obtained. This shows that a learning-based approach is a